If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-10.1t-75=0
a = 4.9; b = -10.1; c = -75;
Δ = b2-4ac
Δ = -10.12-4·4.9·(-75)
Δ = 1572.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10.1)-\sqrt{1572.01}}{2*4.9}=\frac{10.1-\sqrt{1572.01}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10.1)+\sqrt{1572.01}}{2*4.9}=\frac{10.1+\sqrt{1572.01}}{9.8} $
| 7/22(44)=2(r) | | 202.5=36t-0.8t^2 | | 14w=5w+45 | | y-94=582 | | 5x^2-11/2+3/2=0 | | -4=h-20= | | 5^9+q=2^3 | | 9x+36=x(x) | | 660=22000*(.35-x) | | 7x+4=1x+3 | | 3x+(2x+20)=90 | | 2.5(x+4)=4.1+16-1.6x | | -234=x+183 | | 10x+18=24x+40 | | x=-1,x=-6 | | 4×+7y=-135 | | (6x-3)(2x+13)=360 | | 36=1/2h(6-3) | | 7/8(x-3)=-1/8 | | 16x^2+4x+3=3 | | 4x^2-50x+200=0 | | 13+w÷7=-8 | | (100-x)+x=100 | | (100-x)+x1=00 | | Q*14=8(q+7) | | F(x)=x-10/2x+6 | | (x+52)+x+(2x-20)=180 | | 4x^2-50x+175=0 | | 1.5-2.7=0.8y+1.78 | | 3(-3s-12)+40=-24s-21 | | 2x+x+52+2x-20=180 | | 2x+52+2x-2=180 |